CHROM. 7138

CORRECTED PHYSICOCHEMICAL INDICES OF MONO- AND DIALKYLAROMATIC HYDROCARBONS ON SQUALANE

N. DIMOV and T. PETKOVA
Institute of Petroleum, Oporska reka 5, Sofia 2 (Bulgaria)
and
D. SHOPOV
Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia 13 (Bulgaria)

Abstract

SUMMARY A method is given for calculation of correction factors of the physicochemical indices ($P C I$) of mono- and dialkyl aromatic hydrocarbons. It was shown that the corrected $P C I$ for the hydrocarbons are in agreement with the experimental retention indices I on squalane. Discrepancies observed are within the limits of the results obtained for the I, determined experimentally in different laboratories.

INTRODUCTION

We have proposed ${ }^{1}$ a method for the calculation of the physicochemical index ($P C I$) correction factors of isoparaffins and cycloparaffins. The PCI obtained, duly corrected, agree with the experimental retention indices I within the limits of $1-2$ index units (i.u.). These discrepancies do not affect the accuracy of a routine analysis with packed columns. The difference between the $P C I$ and the I of olefins and aromatic hydrocarbons is regarded as a result of the properties of the $C=C$ bond. The presence of an aromatic ring in a compound considerably reduces the retention of that compound on squalane compared with that of the normal paraffins on squalane, and the calculated $P C I$ are bigger than the experimental I.

In the present paper the possibility of calculating the $P C I$ correction factors of aromatic hydrocarbons separated on squalane is discussed. Investigations ${ }^{2-6}$ have shown that the experimentally obtained Kovats retention indices I of hydrocarbons separated on squalane differ and the greater the temperature dependence of I, the greater the difference. They usually vary from 2-3 i.u. for aromatic hydrocarbons. Substantial discrepancies in the calculated retention indices I are obtained if the latter have been treated according to the PCI method. Evidently, a method should be devised to accurately calculate $P C I$ corrections. The flat aromatic ring is found to be the principal difference in the structures of squalane and aromatic hydrocarbons. Transition of a chain into a flat structure reduces the retention on squalane so that the magnitude of the $P C I$ correction factors for the aromatics is negative. Linear and branched alkyl groups improve the retention, as already observed in isoparaffins and
cycloparaffins. As a result, the magnitude of the negative correction of mono- and dialkyl aromatic hydrocarbons decreases. Three times and more substituted aromatic hydrocarbons are not included in the method for calculating the corrected PCI.

METHOD

The following PCI correction factors of aromatic hydrocarbons separated on squalane were calculated:
(1) Aromatic ring: -40 i.u.
(2) The first methyl group alkylating the ring: +2.5 i.u.
(3) The second methyl group: +2.5 i.u. if it elongates the first methyl group, but: +5.0 i.u. in para position, +5.0 i.u. in meta position, and 0.0 i.u. in ortho position.
(4) The third and subsequent methyl groups of mono- and dialkyl aromatic hydrocarbons are located in the already available alkyl groups as set forth above. If elongated, the contribution is found to be +2.5 i.u., and if branched +5.0 i.u.

Examples

Calculation of the corrected PCI of 1-methyl-2-ethylbenzene. The PCI of 1-methyl-2-ethylbenzene at 100° is 1001.0 i.u. Correction: (1) for the aromatic ring, -40 i.u.; (2) for the first methyl group, +2.5 i.u.; (3) for the second methyl group in the ortho position, 0.0 i.u.; and (4) for the third methyl group, making the previous group longer, +2.5 i.u. Total correction is -35.0 i.u., so that the corrected $P C I$ is 966.0 i.u. (experimental I is 965.8 i.u.).

Calculation of the corrected PCI of 1,4-diisopropylbenzene. The PCI of 1,4diisopropylbenzene at 100° is 1175.9 i.u. Correction: (1) for the aromatic ring, -40.0 i.u.; (2) for the first methyl group, +2.5 i.u.; (3) for the second methyl group in the para position, +5.0 i.u.; (4) for the two methyl groups extending the chain, $+2 \times 2.5$ i.u. ; and (5) for the two methyl groups as chain branches, $+2 \times 5.0$ i.u. Total correction is -17.5 i.u., so that the corrected $P C 1$ is 1158.4 i.u. (cxperimental I is 1159.0 i.u.).

RESULTS

In Table I the experimental I values determined in our laboratory at 100° and the corrected $P C I$ values at the same temperature are given for 27 aromatic hydrocarbons. The same hydrocarbons were also chromatographed at 92° and their $I_{\text {exp }}$ and $P C I_{\text {corr }}$ calculated. These values were compared with those determined experimentally by Soják ${ }^{7}$. The chromatogtaphic column was the same as used in a previous study ${ }^{1}$.

The data tabulated show that large discrepancies rarely occur. Of all the aromatic hydrocarbons examined only four showed deviations of more than ± 3.0 i.u. between the corrected $P C I$ and the experimental I. These discrepancies may be due to the different sources of data for vapour pressure and are comparable with those recently mentioned in the literatures.

Significant disparities seen in Table I might result from the experimental I being determined in different laboratories. The agreement observed between $P C I_{\text {corr }}$ and

TABLE I
I VALUES OF AROMATIC HYDROCARBONS

Hydrocarbon	$\Gamma_{0 \times p}^{100}$	PCI ${ }_{\text {corr }}$	I^{920} (Rcf. 7)	$1_{\text {exp }}^{920}$	PCI ${ }_{\text {corr }}^{92 \mathrm{O}}$
Benzene	655.0	655.9	650	653.0	654.0
Toluene	757.1	757.7	758	755.2	754.8
Ethylbenzene	847.4	849.5	847	845.1	847.4
p-Xylene	862.0	860.5	861	860.0	857.6
m-Xylene	864.0	864.5	863	862.0	862.3
o-Xylene	883.0	885.7	883	880.6	882.8
Isopropylbenzene	906.7	907.9	907	903.7	905.5
n-Propylbenzene	936.3	935.9	935	935.8	933.4
m-Ethyltoluene	949.5	951.3	948	946.2	948.8
p-Ethyltoluene	951.9	952.3	950	950.0	949.6
o-Ethyltoluene	965.8	966.0	964	963.0	963.3
tert.-Butylbenzene	974.6	973.4	973	972.2	970.9
Isobutylbenzene	990.1	984.5	989	987.7	981.7
sec.-Butylbenzen)	990.0	989.0	989	987.7	986.3
n-Butylbenzene	1036.4	1037.2	1035	1033.6	1034.5
m-Isopropyltoluene	1002.1	1000.0*	1002	1001.9	997.3*
p-Isopropyltoluene	1016.5	1018.6	1010	1012.4	1015.9
o-Isopropyltoluene	-	1011.7**	1015	1015.2	1009.4**
m-(n-Propyl)toluene	1033.8	1034.5*	1033	1031.4	1031.8*
p-(n-Propyl)toluene	1040.5	1038.5*	1039	1036.8	1035.5*
o-(n-Propyl)toluene	1046.9	1045.2*	1045	1043.6	1042.2*
m-Diethylbenzene	1029.0	1033.2	1028	1026.6	1030.8
p-Diethylbenzene	1040.5	1043.0	1039	1036.8	1040.3
o-Diethylbenzene	1040.5	1040.4	1039	1036.8	1037.8
m-Diisopropylbenzene	1126.0	1126.1	-		1125.3
p-Diisopropylbenzene	1159.0	1158.4	-	-	1155.4
o-Diisopropylbenzenc	1132.0	1129.7	-	-	1124.7

* Calculated from the data for vapour pressure at 92° after ref. 8.
$I_{\text {exp }}$ shows the advantages of the method proposed with regard to a preliminary orientation for the separation of hydrocarbons at a given temperature, as well as for peak identification.

REFERENCES

1 N. Dimov and D. Shopov, J. Chromatogr., 63 (1971) 223.
2 L. S. Ettre and K. Billeb, J. C/iromatogr., 30 (1967) 1.
3 L. S. Ettre and K. Billeb, J. Chromatogr., 30 (1967) 12.
4 D. A. Tourres, J. Chiromatogr., 30 (1967) 357.
5 C. A. Cramers, J. A. Rijks, V. Pacáková and I. Ribreiro de Andrade, J. Chromatogr., 51 (1970) 13.
6 L. Sojakk, J. Hrivňák, P. Majer and J. Janák, Anal. Chem., 45 (1973) 293.
7 L. Soják and J. Hrivňák, Ropa Uhlie, 11 (1969) 364.
8 J. Krupcik, O. Lipska and L. Soják, J. Chromatogr., 51 (1970) 119.
9 J. M. Takács, J. Chromatogr. Sci., 11 (1973) 210.

